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Abstract

The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal
circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman—
Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its globa
character, the implemented method allows to bypass the difficulty of downstream—upstream interactions. Cauchy conditions characterizing
the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases correspordihg to
Pr— 0 andPr — oco. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are
finally performed in order to illustrate the theory.

0 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Le probleme fondamental du démarrage d’un écoulement de convection mixte asymeétrique est posé en termes d’évolution des épaisseur
des couches limites dynamique et thermique. Cette procédure permet, de part son caractére global, d'aplanir les difficultés liées aux
interactions amont-aval dues a I'existence d'un écoulement de retour dans la zone de convection mixte défavorable. Les positions des point
de départ des couches limites et les conditions de Cauchy correspondantes sont discutées en fonction de la valeur du nombre de Prand

Quelques résultats numériques sont présentés afin d'illustrer la présente théorie.
0 2003 Editions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction case the separation point approaches the forward stagnation
point by increasing the buoyancy effects and the boundary
Mixed convection flow is usually associated with the layer character may be removed beyond certain critical
interaction between forced and free convection acting to conditions.
either reinforce or oppose one another; it is known since  When these two effects are uniformly favourable or
the work by Merkin [1] that, when buoyancy aids motion, uniformly unfavourable along the heated body, the boundary
separation is delayed, indeed suppressed. In the oppositéayer flow begins from a stagnation point, the location of
which and the associate Cauchy conditions may be deduced
mspon ding author. py using the symme_try propert_ies of the flow. _For instanc_e,
E-mail addressesn_amaouche@yahoo.fr (M. Amaouche), in the case of a horizontal cylinder, the flow is symmetric
m.kessal@voila.fr (M. Kessal). about a vertical plane containing the axis of the cylinder if
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Nomenclature

a cylinderradius . .............. ..ol m 3y dimensionless dynamic boundary layer
g gravity acceleration................... -$n? thickness
Gr Grashof number St dimensionless thermal boundary layer thickness
Jx tangential component of the upward unit vector 4 =41/84
Nu Nusselt number 8 = 53
Pr Prandtl number 0 normalized temperature
Re Reynolds number v kinematic viscosity . ................. 51
Ri Richardson number é ~ ijg‘;
T d|men_S|onaI tempgrature .................. K i mixed convection function
U, potential velocity field _ T wall skin friction
u,v angular and normal velocity components ]
Uoo dimensional free stream velocity ... ... .. .ant Subscripts
X,y angular and normal coordinates e potential flow
s separation point

Greek symbols w heated surface
o inclination of the free stream from the 00 free stream

vertical. ... rd 0 starting point
B coefficient of thermal expansion ......... -k X,y partial derivation with respect to, y

the constant far stream is vertical and the stagnation pointwith a reverse flow. The unknown pressure distribution was
is either the lowest or the upper most point of the cylinder, then calculated as a part of the numerical integration pro-
depending on the particular data of the problem. Near the cedure. However, the occurrence of reverse flow introduces
stagnation point, the flow is described by a self similar a mechanism of influence of the downstream conditions on
solution which constitutes the first term of a Blasius series; the evolution of the boundary layer. This behaviour which
the higher order terms are then obtained recursively from theis consistent with the elliptic nature of the Navier—Stokes
first one [2]. equations is also authorized by using another boundary con-
The Blasius procedure fails to be valid in certain circum- dition for closure. One of the recent study in this area is
stances as in the case when the free stream is nonverticallyealized by Higuera [5] who solved numerically the problem
directed [3]. This failure expresses the loss of Cauchy con- for mixed convection in a wall jet over a finite length hori-
ditions for the boundary layer evolution and is a result of the zontal plate by taking into account the upstream information
coexistence and the alternation of favourable and oppositepropagation due to the buoyancy induced pressure. In spite
mixed convection domains. The location of the stagnation of the great number of available studies in this area, we are
point is not known and is somewhere in the unfavourable not aware of any work on mixed convection flows where the
mixed convection domain, between the lowest point of the question of the stagnation point location and the correspond-
heated cylinder and the stagnation point of the potential flow. ing Cauchy conditions is posed for an asymmetric boundary
In this region, the boundary layer is composed of an inflow layer. This question is fundamental because it would enable
part near the wall, driven primarily by buoyancy, and an out- us to understand where and how the boundary layer begins
flow part driven by the external boundary condition. There- to develop and therefore to determine its evolution along the
fore, this particular structure of the boundary layer flow heated body.
resembles that which occurs in the reattachment region be- It is the purpose of this paper to seek the location of the
cause buoyancy behaves like an increasing adverse pressurgagnation point which results from the local equilibrium
gradient. The situation is also similar to that encountered between forced and free convection effects and to carry
near a separation point where the boundary layer equationsout a local analysis in order to characterize the starting of
for two-dimensional incompressible fluid flow possess a sin- the boundary layer flow. This will be achieved by using
gularity when an outer pressure distribution is prescribed. an approximate method of Karman—Pohlhausen type. The
In practice, the latter is locally altered near the separation result suggests that the global character of the approximation
point in a manner which allows the boundary layer solu- may overcome the difficulty arising from the upstream-
tion to be regular. By requiring the displacement thickness downstream interaction and allows to recover, in the mean
to assume a non-singular form, Catherall and Mangler [4] sense, the parabolic nature of the problem.
have numerically integrated the boundary layer equations This paper is organized as follows. In the following
beyond the separation point and obtained regular solutionssection we will briefly list the basic equations. We will
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continue with the description of the integral formulation in dimensionless external flow velocity alongside the cylinder
Section 3. This section will also give the coupled evolution and the tangential component of the upward unit vector. The
equations for the boundary layer thicknesses. The Cauchynormalized temperaturkis related to the dimensional tem-
conditions for these equations will be discussed in Section 4. peraturel by 6 = (T — Teo)/(Tw — Too) WhereT,, and T
Then some numerical results will be given. Finally we will stand for the (constant) wall and ambient temperatures, re-
present our concluding remarks and indicate suggestions forspectively. FinallyPr and Ri are, respectively, the Prandtl
further work. number and the Richardson numh@rRe2), Gr being
the Grashof numbetgB (T, — Too)a®/v?) whereg is the
gravitational acceleration argglithe thermal expansion coef-
2. Basic equations ficient.
In order that the parabolic problem (2.1)—(2.4) be well
We consider a two-dimensional steady and laminar bound-osed, it must be completed by the appropriate Cauchy
ary layer flow around a heated horizontal circular cylinder, conditions on the evolutionary variabte This question will
under the combined effects of forced and free convection. be examined in Section 4.
The cylinderis placed in a nonvertically oriented free stream.
Leta be the inclination of the latter with respect to the verti-
cal. One can expect that same qualitative behaviours occur aB. Evolution equationsfor boundary layer thicknesses
the stagnation point flow whateverin the rangg0, ). So
it suffices, in order to illustrate the purpose, to restrict our-  First of all, we introduce two similarity variables, namely
selves to the intermediate case- 7/2 (the schematic ofthe ¢ = y/3a(x) andn = y/dr(x) wheres,(x) andér(x) are
problem is given in Fig. 1). By using the classical Boussi- the local dynamic and thermal boundary layer thicknesses,
nesq approximation, the governing equations and boundaryl'espective|y. After this we look for an approximate solution

conditions may be written in dimensionless form as: by representing the velocity and temperature profiles by
fourth order polynomials irt and 5. Taking into account
uy+v,=0 (2.1) the outer matching conditions and the conditions at 0,
du, we obtain:
Uiy +Vily = Ue—— dx +RIJX9+uyy (2.2) .
u(x,y) =u(){1—F@)}+ Ax)G(©) (3.1)
Pr(ué, + voy) =0y, (2.3)
0(x,y)=F(n) (3.2)
u=v=0 6=1 ony=0 2.4)
u—u.(x) #—0 asy— oo ' where:

_ 3
In these equations, the radiasof the cylinder is cho- £ (¢) =1 =0 1+0),

sen as a lengthscale for the nondimensionalization of the G (¢) = }g(l 0)3 (3-3)
azimuthal coordinater whose origin is at the stagnation

point of the potential flow. The radial coordinatecounted dut

from the wall, is rendered dimensionless by the scale factor A(x) = 5d(x)< e + Rin) = 5§(x)f(x) (3.4)
aRe Y2 in order thaty be of order unity in the boundary X

layer; Re denotes the Reynolds numhega/v whereu, It is to be noted that the approximations (3.1) and (3.2)
designates the constant free stream velocity atite kine- remain incomplete because they are subordinated to the

matic viscosity. The angular and radial velocity components knowledge ofs;(x) and é7(x). The equations governing

u andv are scaled by, andus, Re /2, respectively. The  the evolution ofs; and 7 are obtained by integrating the
functionsu, (= 2sinx) andJx (= sin(x + «)) indicate the momentum and energy equations along the radial direction
and overs; anddr, respectively. To avoid duplication of
elementary steps, we only give the results in the form:

ds ~ du, .
U.. 22 L 5= _ ¢, —RiJxly (3.5)
T dx dx
— Pr diz =Nu (3.6)
o .
. where the notations are as follows:
— ou
Ty = —
ay y=0
is the wall shear stress and
NU— 20
Fig. 1. Schematic of the flow. dy =0
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ds dA

is the Nusselt number. 0— +R—=K (3.14)
s s dx dx
d T
with:
Id=/9(x,y)dy, IT=/u9(x,y)dy 2P
0 0 P=Py+2452
! (3.7) A
d da
~ ~ 0P df 2
512/(”e_u)d)’a 52=/u(ue—u)dy §=2|Py— Y 53 (3.15)
0 0 X due dPy
For their regularity, the two last quantities are preferred — 8 RiJxHo + dx Pi+ du,

to the classical displacement and momentum thicknesses
which are singular at the stagnation point of the potential ¢ — —(ueH1+ 3/§H2)
flow. This singularity is removed only in certain special con- 2

figurations among which is the symmetric case. Introducing  _ Aa(ue@ + ~@> (3.16)
expressions (3.1) and (3.2) farand#é into integrals (3.7) dAa da '
gives: 2 du, df
K=——A§| H1 + SHy—
S1=0a( e — L A) = Pr(ue, A)s 3.8 o o
1= d<1—oue—1—20 >= 1 (e, A)Sa (3.8)
5 _ 37 1 P 1 h 4. Cauchy conditions
2= %\315" 945" " 9072 .
~ In order to set up a closed problem, the dynamic sys-
= Pa(ue, A)dq (3.9) tem (3.13), (3.14) must be completed by appropriate Cauchy
1y = 84 Ho(A) conditions. These are obtained by assuming regular behav-
~ iours for the fundamental variablésnd A. This is possible
It =8a (“eHl(A) + AHZ(A)) only under certain reserves depending on whether the prob-
where A denotes the ratiér /8, and the functiongo, H1 lem is symmetric or not.
and H» are (see Appendix A):
3 4.1. Symmetric case
Ho=—A
10 Let us recall that the symmetric problem is characterized
Hy= Az(i _ iA2+ iA3) (3.10) by a verticglly ori_en_ted free _stream. In this c_:onfiguration,
15 140 180 the stagnation point is known in advance and is naturally the
of 1 1 3 , 1 4 forward stagnation point of the potential flow. At this point,
H2 =47 55~ 822 T 5602 ~ 10802 we have of course:
foraA<1l(Pr>1) (P,0O,R)=1(0,0,0) 4.1
1 1 . ~
Ho=1—-A"14ZA3_2-x4 sinceu, (0) = Jx(0) = 0 and thereforel (0) = 0. Hence, one
2 5 ite:
3 3 2 | 3 , 1 | a1 may write:
H=—A—-—4+—A"—-—A""+——A" . S
10 10 15 140 180 ~(Ri,5, A, x=0)=0 4.2)
Hy— - Ly o Ly e
7120 180 840 3024 K(Ri,Pr,8,A,x=0)=0 (4.3)

fora>1(Pr<1 . . .
( ) These equations are coupled via the teHm(A). Their

Finally the wall shear stress and the Nusselt number areresolution provides the valuesy and Ag at x = 0 as

expressed as follow: functions ofRi depending on the parameter. Moreover,
Quo+ A/6)  Polue, A) one may conclude again that

YT T W (3.12) (@) - (d—A> -0

Nu= i dx x=0 dx x=0
8aA since Egs. (2.1)—(2.4) remain unchanged by the transforma-

We can now transform Egs. (3.5) and (3.6) by means of tion
relations (3.8)—(3.12) into two coupled evolution equations

for § (the square o8;) and A, namely: (x,y,u,v,0) =(=x,y,—u,v,0) (4.4)
ds This invariance comes from the symmetry property afc)
=S (3.13)  and hence ofx(x).

T =
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4.2. Asymmetric case following second order algebraic equation is obtained for
(£)x
In the asymmetric case, the free stream is not vertically 2
) o ) ds
oriented, so the external velocity field and the tangential Aq( — ) +2Bo( — ) +Co=0 (4.7
component of the buoyancy force are described by two X/ xo dx /4

different functions. As a result, the invariance property The coefficientsdo, Bo andCo are given in Appendix B.
discussed above is no longer satisfied. Then, neither

0, nor the abscissa of the lowest point of the cylinder 4.2.2. pr— 0

does constitute a solution for Eqg. (4.1). One can however \We first note that ifPr is much less then unity, heat is
expect that the location of the point where the boundary transferred mainly by conduction and thereféfebecomes
layer begins to develop is somewhere in the unfavourable infinitely large, whilsts remains a well-defined function, so
mixed convection region, between the stagnation points of A — oo and Hyg, H; and H, take the asymptotic following
free and forced convection. Owing to the parabolic nature forms

of the problem in the symmetric case and because of 1

the reversal direction of the flow in the present case, the Ho=1, Hy = 04 Hy = 120 (4.8)
procedures which are used to describe the beginning of the
boundary layer in each of them are slightly different. In
the asymmetric case the Prandtl number which characterize
the importance of thermal convection plays the leading
part in the procedure. For convenience, but without loss of
generality, we consider, as it is mentioned previously, only
the casex = 7/2.

The approximatiornHy = 1 yields the decoupling of the
evolutions of the two boundary layers since Eq. (3.13) is no
Sfonger dependent on. Furthermore, this equation becomes
then similar to that corresponding to the c&e= 1 with a
simple modification of the global buoyancy term.

The evolution ofA which is slaved to that of starts from
the stagnation point of the potential flaw = 0) becauseR
is here proportional tai,(x) and thereforeR(x = 0) = 0.

4.2.1. Pris close to unity Accordingly, Eq. (3.14) yields:

When the Prandtl number is of order unity, the two

boundary layers are of the same size, so the ratids ([( _ Q@) -0 (4.9)
of order unity. Hence, Eq. (3.13) suffices to describe the dx /.o

communal thickness of the two layers. In order that> which can be written in accordance to (3.13)

8(x) be a smooth function, the existence of a particular

stationxg where P(xg) = 0 requires that at this statiofi (PK —Q8)x=0=0 (4.10)

must also vanish. One can readily find that where the SeCOﬂdSQ|Ving this equation gives an approximate valuespfat
order polynomialP (u., A) vanishes, one must have either  y =0 in the form:

_ 3 -1/2
A =12 45 5~ <1—0Pr> (4.11)

or
This formula shows that in the lim®Pr — 0, the thermal

A=—17.76u, (4.6) boundary layer thickness at the stagnation point of the

The first condition is not realistic because it does not allow to potential flow is determined only by the Prandit number.

recover the results of the limiting case of forced convection
by taking the limitRi — 0.

The second condition which will be considered later,
yields a realistic description of the boundary layer flow,
including particular configurations such as forced, free and
symmetric mixed convection. The next step consists of
seeking the location of the starting point of the boundary

4.2.3. Pr—> o

In the limit of large Prandtl numbers, we recall that heat
is rather convected by the fluid flow except in a very thin
thermal boundary layer. Since the thicknéssand the ratio
A become vanishingly small then the functiatig, H1 and
H> may be asymptotically approached by:

layer. Using the relation (4.6) with the definition (3.4), .~ H = 2 2 Hzgi A2 (4.12)
the conditionS = 0 is transformed into a single variable ' 57 90
equation whose solution gives the starting poipt This As in the previous case the thermal boundary layer evo-

value of course depends on the mixed convection parameteiution follows that of the dynamic boundary layer because
Ri. The valuesp of § at x = x¢ is then deduced from (3.4)  Hp = 0 and therefore the right-hand side of (3.13) does not
with the aid of (4.6). either depend om\. For this reason, Eq. (3.13) appears as
Because of the vanishing of both and S at x = xo, a forced convection equation where buoyancy terms are im-
the derivative((‘]—fc),(0 must be determined to complete the plicitly taken into account via the mixed convection function
formulation of the initial value problem. Making use of the A(x). The procedure used in the cd®e= 1 is also applied
Taylor expansion and keeping only the first order terms, the to seek the station where the dynamic boundary layer begins
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to develop. Concerning the evolution of the thermal bound-

ary layer, it is advisable to firstly note that, in view of (4.10),
the functionR takes the form:

R~ ia%(/i +12u,) (4.13)
45

It becomes zero at the statiatj whereA = —124,, that
is precisely where,, = 0. This means that the point of zero
skin friction marks the beginning of the thermal boundary
layer. Here, the valug\g of A is found by solving Eq. (4.10)
atxgj. This equation can again be solved explicitly in view
of (4.12), one obtains:

120P 13
Ao:Prl/3( - a 2,47 >
(A4 4ue)S +8P (B g + 5840) / x=x}
(4.14)
which gives after some elementary steps:
Or)xy = Pr‘1/3(d7d> (4.15)
ﬁ(fwad) x=x}

This is in agreement with the classical result which tells
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A be realistic, the factoR and the expressiofPK — QS)
must cancel at the same station, say Otherwise, the
predicted value\g is corrected and the procedure is repeated
until convergence is reached.

5. Somenumerical results

Information about the influence of Prandtl number on
the variation of the dynamic boundary layer thickness at
the stagnation point witRi can be gained from Fig. 2(a)
(Pr<1) and (b)(Pr > 1). First of all, it is not surprising
that the curves all converge to a same point in the forced
convection regime. Fig. 2(a) indicates that the boundary
layer thickness at = 0 is a smoothly decreasing function
with respect toRi for the reference casBr = 1 and for
Pr less than unity. It appears that the rate of decrease
is more important for smallPr. We also observe the
breakdown of boundary layer character, in the opposite
mixed convection, beyond some critical value [Ri|
which decreases by decreasiRg. Qualitatively opposite
observations can be made from Fig. 2(b), concerning the

us that the thermal boundary layer thickness behaves likeeffects of moderate and large values Bf. Here, the

Pr=1/3 asPr — oo.

In the present asymptotic case we note that the initial
value given by (4.15) depends on the history of the flow from
the starting point of the dynamic boundary layer. In order
to complete the initial conditions for Eq. (3.14) a Taylor
expansion is finally performed to express the va(l%@)xé.

4.2.4. The general case of finite values of Pr

boundary layer is removed, for assisting external flow, if the
Richardson number exceeds some threshold value which is
closedto 0.1 aBr — oco. The increasing departure witRi|
from the base cader = 1 is an indication of the importance
of the Prandtl number on the convective properties of the
flow.

To illustrate how the buoyancy force and the Prandtl
number affect the thermal boundary layer, representative dis-

The main feature of the previous particular cases is that tributions of A (rescaled by the factd?r!/3) for Pr > 1 and
the dynamic boundary layer evolves independently of the of §; for Pr < 1 are shown in Fig. 2(c) and (d), respectively.

thermal one. Its evolution is however influenced by buoy-

The reference casd’( =1, A = 1) is included for com-

ancy. Once the dynamic boundary layer is determined for parison. Let us notice that the relation (4.15) corresponding

all x, the equation governing the evolution df is then
integrated. For an arbitrary value Bf, the two boundary

layers interact, so the coupled Egs. (3.13) and (3.14) must
be solved simultaneously. Furthermore, this case is of par-
ticular relevance because the conditions required to start the

integration are no longer available. In order to circumvent
this last difficulty, a prediction—correction iterative proce-

to the asymptotic caser — oo becomes in the symmetric
configuration:

Pri/3(A),—o (5.1)

15 180

Then, the behaviour of the thermal layer thickness as
function ofRi for Pr — oo follows from that of the dynamic

= [—50 + —5§(Ri+4)}

dure is implemented and the missing conditions are soughtjayer thickness,. We observe a monotonic decrease/of
by proceeding as follow. We gradually increase or decreasefor all Pr, in accordance with the evolution given by Polidori

the value ofPr from the limiting valuesPr — 0, Pr - 1
andPr — oo for which the solutions are already known. For
a given value ofPr, an estimate ofA, say Ao, is required

to initialize the procedure. To this end, the solution corre-
sponding to a previous value Bf is chosen. Proceeding as
before, the coupléxg, §o) is then calculated. Performing a
first order Taylor expansion of (3.13) negrand making use
of (3.14) to eIiminate(‘é—f)xo, we get an equation similar to

(4.7) which allows to expres§e ).

et al. [6].

For Pr less than unitydr is preferred toA owing to
the fact thatsr Prl/2 behaves like a constant @& —
0, in view of (4.11). For this range oPr, 87 is lying
between the extreme limits corresponding?o= 1 and to
asymptotically smalPr.

In Fig. 2(e) we have displayed the variation of the separa-
tion pointx; with Riin the symmetric case corresponding to
oppositgRi < 0) and favourabléRi > 0) mixed convection.

Subject to these predicted conditions, Egs. (3.13) and After proper implementation of notational changes, results

(3.14) can be numerically solved by using a fourth order
Runge—Kutta scheme. In order to the evolutionss aind

given by Merkin’s model foPr = 1 are closely recovered
near the forced convection regime. Noticeable divergences
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Fig. 2. Symmetric case: (a) Initial value &f as function ofRi for Pr > 1.
(b) Initial value ofs; as function ofRi for Pr < 1. (c) Initial value ofA as
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Fig. 3. Location of the stagnation point verdRs (a) ForPr > 1. (b) For
Pr<1.

appear as$Ri| is increased, especially for positive value of
Ri. The critical value oRi which first gives no separation is
difficult to determine as it is noted by Merkin [1]. We do not
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Fig. 4. Variation of the initial value 08; with respect toRi (asymmetric
case): (a) FoPr > 1. (b) ForPr < 1.

the starting point from its positions in forced convection is
a nearly linear function oRi. In the limit Pr — 0, xo as-
ymptotes the lower point wheRi is large enough. These
results are in accordance with the Prandtl number effects. In
the range of Prandtl numbers less than unity, this shift ex-
hibits a change in incline for smaftr and at abouRi = 4.

know how to explain the discrepancies for the computational Beyond this value oRi and asPr — 0, the starting point

approaches are very different.

Concerning the asymmetric configuration, only positive
values ofRi are considered owing to the symmetry proper-
ties of the problem whea = /2. Plots of the starting point
xo of the dynamic boundary layer with respect to Richard-
son number for the same representative valueBrofre
given in Fig. 3(a) and (b). It is to be noted that heating the
cylinder brings the poinkg nearer to the lower point. In-
creasingPr makes this tendency less noticeable andFor
greater than some limit which is of order unity, the shift of

of the boundary layer approaches closely the lower point.
In this situation, the boundary layer flow globally resembles
to that of free convection. Fig. 4(a) is a plot &f versus

Ri for moderate and large values Bf. It is seen that, for

a fixedRi, &, is a decreasing function d¢r; it grows with

Ri especially wherPr is closed to unity. Fig. 4(b) presents

a particular interest owing to the seemingly strange behav-
iour of §; with Ri for asymptotically smalPr. We observe
indeed a change in incline at certain valueRif(Ri = 4

for Pr — 0). For Ri less than this limitg; grows with Ri
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and decreases beyond this limit. The reason for this follows I; = §; Ho(A)

from Fig. 3(b) because wheRi is greater than the previ- 1

ous limit, the starting point of the boundary layer approaches ST/u(g)G(n)dg for 87 < 8,

closely the lower point wher&; decreases witRiaccording

to Fig. 2(b). Ir=1 0 5
/u@dy+/u89dy for 87 > 84

6. Concluding remarks 0 8a

By using (3.1) and (3.2} can be written:
The nonexistence of trivial Cauchy conditions for an

asymmetric mixed convection problem is the result of the
interaction between ascending buoyancy driven flow near I =87{ue/[1— F()]F(n)dn
the wall and descending flow far away from the wall. This 0

confers to the boundary layer flow an elliptic character.

The use of the integral method of Karman—Pohlhausen type
allows to characterize the beginning of the boundary layer
and therefore to recover the parabolic nature of the flow in
the global sense. It is shown that the two boundary layers and forA > 1, we have:
do not start from the same point except for = 1. For

this particular value ofPr, the starting point is found as {

1

1
+/I(x)/G(g)F(n)dn} fora<1
0

1/A

e / (1-F@)F@mdn

0

root of an algebraic equation, depending on the Richardson/r = dr
number. A similar equation is solved in order to found the

location of the starting point and initial conditions for the /4 4
dynamic boundary layer in the limiting cases of small and + A®x) / G()F(n)dn+ u, / F(n)dn}
largePr. In the former one the thermal boundary begins to 0 1

develop from the stagnation point of the potential flow. It _ _
begins to develop from the point of vanishing skin friction Which can be written as:
in the second one. For an arbitrary valuePof a prediction 1 1/A

correction procedure is required for solving the problem. It is _ B
worth noting that the starting point of the thermal boundary It = oryue Fnydn F@E)Fdn

layer is either at the left or at the right of dynamic boundary 0 va 0

layer one’s, depending on whether is smaller than unity .

or not. + A(x) / G@)F(m)dny fora>1
0

The formulas (3.16) follow by putting:
Acknowledgements
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Hi(A)=4 ", 14
. /F(n)dn—/F(g)F(n)dn fora>1
Appendix A ; )
1
8 /G(g)F(n) dp fora<1
Ip = /9(x,y)dy 0
/ H2(A) =1 14
1 / G(g)F(np)dn fora>1
(SdA/F(n) dn fordr <8y 0
_ 0
- e A dix B
endix
Sa A / F(n)dn forér > 64 PP
0 oP

In view of (3.3),1; becomes: Ao = f Y
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du.[ 0P3 ~0Ps
By = — 4+ Ps+ A—
dx | du,
dffoP a
+5—f[—? +2P4+A—~4}
de [ 9A

3 . d Py
+ -RiJXx-2f—
5 f A

P4 (df\2
=8—=(=
Co aA<dx>

d2f  du.df (9Ps
82| Pa—= — (=
+ |: 4dx2+ dx dx(aA
du.\%9Ps _df dPo
b —2————+P
+[<dx)8ue dxaA+ >
3 _.dJx 0Py du,
PRI L0220
+5 Idxi| du, dx

with:

IP IP
Py=Py+222 py=227°
IA IA

0Py
+
8ue>j|

d?u,
dx2
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P
Ps= 2<P1 + —2>
o,

References

[1] J.H. Merkin, Mixed convection from a horizontal circular cylinder,
Internat. J. Heat Mass Trans. 20 (1977) 73-76.

[2] G.K. Sharma, S.P. Sukhatame, Combined free and forced convection
heat transfer from a heated tube to a transverse air stream, J. Heat
Trans. 91 (1969) 457-459.

[3] M. Amaouche, On some mixed convection flows described by exact
solutions of Prandtl equations, European J. Mech. B Fluids 10 (1991)
295-312.

[4] D. Catherall, K.W. Mangler, The integration of two-dimensional lami-
nar boundary layer equations past the point of vanishing skin-friction,
J. Fluid Mech. 26 (1966) 163-175.

[5] F.J. Higuera, Opposite mixed convection flow in a wall jet over a
horizontal plate, J. Fluid Mech. 342 (1997) 355-375.

[6] G. Polidori, M. Rebay, J. Padet, Retour sur les résultats de la théorie de
la convection forcée laminaire établie en écoulement de couche limite
externe 2D, Internat. J. Therm. Sci. 38 (1999) 398-409.



