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Abstract

The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated
circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of
Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because
character, the implemented method allows to bypass the difficulty of downstream–upstream interactions. Cauchy conditions cha
the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases correspondingPr = 1,
Pr → 0 andPr → ∞. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experim
finally performed in order to illustrate the theory.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Le problème fondamental du démarrage d’un écoulement de convection mixte asymétrique est posé en termes d’évolution des
des couches limites dynamique et thermique. Cette procédure permet, de part son caractère global, d’aplanir les difficultés
interactions amont-aval dues à l’existence d’un écoulement de retour dans la zone de convection mixte défavorable. Les positions
de départ des couches limites et les conditions de Cauchy correspondantes sont discutées en fonction de la valeur du nombre
Quelques résultats numériques sont présentés afin d’illustrer la présente théorie.
 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Mixed convection flow is usually associated with t
interaction between forced and free convection acting
either reinforce or oppose one another; it is known si
the work by Merkin [1] that, when buoyancy aids motio
separation is delayed, indeed suppressed. In the opp
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case the separation point approaches the forward stagn
point by increasing the buoyancy effects and the bound
layer character may be removed beyond certain crit
conditions.

When these two effects are uniformly favourable
uniformly unfavourable along the heated body, the bound
layer flow begins from a stagnation point, the location
which and the associate Cauchy conditions may be ded
by using the symmetry properties of the flow. For instan
in the case of a horizontal cylinder, the flow is symme
about a vertical plane containing the axis of the cylinde
Elsevier SAS. All rights reserved.
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Nomenclature

a cylinder radius . . . . . . . . . . . . . . . . . . . . . . . . . . . m
g gravity acceleration . . . . . . . . . . . . . . . . . . . m·s−2

Gr Grashof number
Jx tangential component of the upward unit vector
Nu Nusselt number
Pr Prandtl number
Re Reynolds number
Ri Richardson number
T dimensional temperature . . . . . . . . . . . . . . . . . . K
ue potential velocity field
u,v angular and normal velocity components
u∞ dimensional free stream velocity . . . . . . . m·s−1

x, y angular and normal coordinates

Greek symbols

α inclination of the free stream from the
vertical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rd

β coefficient of thermal expansion . . . . . . . . . K−1

δd dimensionless dynamic boundary layer
thickness

δT dimensionless thermal boundary layer thickness
∆ = δT /δd
δ = δ2

d

θ normalized temperature
ν kinematic viscosity . . . . . . . . . . . . . . . . . . m2·s−1

ζ = y/δd
η = y/δT
Λ̃ mixed convection function
τw wall skin friction

Subscripts

e potential flow
s separation point
w heated surface
∞ free stream
0 starting point
x, y partial derivation with respect tox, y
oint
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the

ilar
ies;
the

m-
icall
on-
the
site

tion
ble
the
ow.
ow
ut-
re-
ow

be
ssu
red
tions
sin-
ed.
tion
lu-
ess
[4]

ions
ions

as
pro-
ces
on

ich
es

con-
is

em
ri-
tion
spite
are

the
ond-
ary

able
gins
the

the
m

arry
g of
ng
The
tion

m-
ean

ng
ill
the constant far stream is vertical and the stagnation p
is either the lowest or the upper most point of the cylind
depending on the particular data of the problem. Near
stagnation point, the flow is described by a self sim
solution which constitutes the first term of a Blasius ser
the higher order terms are then obtained recursively from
first one [2].

The Blasius procedure fails to be valid in certain circu
stances as in the case when the free stream is nonvert
directed [3]. This failure expresses the loss of Cauchy c
ditions for the boundary layer evolution and is a result of
coexistence and the alternation of favourable and oppo
mixed convection domains. The location of the stagna
point is not known and is somewhere in the unfavoura
mixed convection domain, between the lowest point of
heated cylinder and the stagnation point of the potential fl
In this region, the boundary layer is composed of an infl
part near the wall, driven primarily by buoyancy, and an o
flow part driven by the external boundary condition. The
fore, this particular structure of the boundary layer fl
resembles that which occurs in the reattachment region
cause buoyancy behaves like an increasing adverse pre
gradient. The situation is also similar to that encounte
near a separation point where the boundary layer equa
for two-dimensional incompressible fluid flow possess a
gularity when an outer pressure distribution is prescrib
In practice, the latter is locally altered near the separa
point in a manner which allows the boundary layer so
tion to be regular. By requiring the displacement thickn
to assume a non-singular form, Catherall and Mangler
have numerically integrated the boundary layer equat
beyond the separation point and obtained regular solut
y

-
re

with a reverse flow. The unknown pressure distribution w
then calculated as a part of the numerical integration
cedure. However, the occurrence of reverse flow introdu
a mechanism of influence of the downstream conditions
the evolution of the boundary layer. This behaviour wh
is consistent with the elliptic nature of the Navier–Stok
equations is also authorized by using another boundary
dition for closure. One of the recent study in this area
realized by Higuera [5] who solved numerically the probl
for mixed convection in a wall jet over a finite length ho
zontal plate by taking into account the upstream informa
propagation due to the buoyancy induced pressure. In
of the great number of available studies in this area, we
not aware of any work on mixed convection flows where
question of the stagnation point location and the corresp
ing Cauchy conditions is posed for an asymmetric bound
layer. This question is fundamental because it would en
us to understand where and how the boundary layer be
to develop and therefore to determine its evolution along
heated body.

It is the purpose of this paper to seek the location of
stagnation point which results from the local equilibriu
between forced and free convection effects and to c
out a local analysis in order to characterize the startin
the boundary layer flow. This will be achieved by usi
an approximate method of Karman–Pohlhausen type.
result suggests that the global character of the approxima
may overcome the difficulty arising from the upstrea
downstream interaction and allows to recover, in the m
sense, the parabolic nature of the problem.

This paper is organized as follows. In the followi
section we will briefly list the basic equations. We w
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continue with the description of the integral formulation
Section 3. This section will also give the coupled evolut
equations for the boundary layer thicknesses. The Cau
conditions for these equations will be discussed in Sectio
Then some numerical results will be given. Finally we w
present our concluding remarks and indicate suggestion
further work.

2. Basic equations

We consider a two-dimensional steady and laminar bo
ary layer flow around a heated horizontal circular cylind
under the combined effects of forced and free convect
The cylinder is placed in a nonvertically oriented free stre
Letα be the inclination of the latter with respect to the ve
cal. One can expect that same qualitative behaviours occ
the stagnation point flow whateverα in the range(0,π). So
it suffices, in order to illustrate the purpose, to restrict o
selves to the intermediate caseα = π/2 (the schematic of th
problem is given in Fig. 1). By using the classical Bous
nesq approximation, the governing equations and boun
conditions may be written in dimensionless form as:

ux + vy = 0 (2.1)

uux + vuy = ue
due
dx

+ Ri Jxθ + uyy (2.2)

Pr(uθx + vθy)= θyy (2.3)

u= v = 0 θ = 1 ony = 0
u→ ue(x) θ → 0 asy → ∞

}
(2.4)

In these equations, the radiusa of the cylinder is cho-
sen as a lengthscale for the nondimensionalization of
azimuthal coordinatex whose origin is at the stagnatio
point of the potential flow. The radial coordinatey, counted
from the wall, is rendered dimensionless by the scale fa
aRe−1/2 in order thaty be of order unity in the boundar
layer; Redenotes the Reynolds numberu∞a/ν whereu∞
designates the constant free stream velocity andν the kine-
matic viscosity. The angular and radial velocity compone
u andv are scaled byu∞ andu∞ Re−1/2, respectively. The
functionsue (= 2 sinx) andJx (= sin(x + α)) indicate the

Fig. 1. Schematic of the flow.
r

-

t

dimensionless external flow velocity alongside the cylin
and the tangential component of the upward unit vector.
normalized temperatureθ is related to the dimensional tem
peratureT by θ = (T − T∞)/(Tw − T∞) whereTw andT∞
stand for the (constant) wall and ambient temperatures
spectively. FinallyPr and Ri are, respectively, the Prand
number and the Richardson number(Gr Re−2), Gr being
the Grashof number(gβ(Tw − T∞)a3/ν2) whereg is the
gravitational acceleration andβ the thermal expansion coe
ficient.

In order that the parabolic problem (2.1)–(2.4) be w
posed, it must be completed by the appropriate Cau
conditions on the evolutionary variablex. This question will
be examined in Section 4.

3. Evolution equations for boundary layer thicknesses

First of all, we introduce two similarity variables, name
ζ = y/δd(x) andη = y/δT (x) whereδd(x) and δT (x) are
the local dynamic and thermal boundary layer thicknes
respectively. After this we look for an approximate soluti
by representing the velocity and temperature profiles
fourth order polynomials inζ and η. Taking into accoun
the outer matching conditions and the conditions aty = 0,
we obtain:

u(x, y)= ue(x)
{
1− F(ζ )

}+ Λ̃(x)G(ζ ) (3.1)

θ(x, y)= F(η) (3.2)

where:

F(ζ )= (1− ζ )3(1+ ζ ),

G(ζ )= 1

6
ζ(1− ζ )3

(3.3)

Λ̃(x)= δ2
d(x)

(
ue

due
dx

+ RiJx

)
≡ δ2

d(x)f (x) (3.4)

It is to be noted that the approximations (3.1) and (3
remain incomplete because they are subordinated to
knowledge ofδd(x) and δT (x). The equations governin
the evolution ofδd and δT are obtained by integrating th
momentum and energy equations along the radial direc
and overδd and δT , respectively. To avoid duplication o
elementary steps, we only give the results in the form:

dδ̃2

dx
+ δ̃1

due
dx

= τw − RiJxId (3.5)

Pr
dIT
dx

= Nu (3.6)

where the notations are as follows:

τw = ∂u

∂y

∣∣∣∣
y=0

is the wall shear stress and

Nu= −∂θ

∂y

∣∣∣∣

y=0



624 M. Amaouche, M. Kessal / International Journal of Thermal Sciences 42 (2003) 621–630

red
sses
tial
n-
ing

are

of
ns

ys-
chy
hav-

rob-

zed
on,
the

nt,

rma-
is the Nusselt number.

Id =
δd∫

0

θ(x, y)dy, IT =
δT∫

0

uθ(x, y)dy

δ̃1 =
δd∫

0

(ue − u)dy, δ̃2 =
δd∫

0

u(ue − u)dy

(3.7)

For their regularity, the two last quantities are prefer
to the classical displacement and momentum thickne
which are singular at the stagnation point of the poten
flow. This singularity is removed only in certain special co
figurations among which is the symmetric case. Introduc
expressions (3.1) and (3.2) foru andθ into integrals (3.7)
gives:

δ̃1 = δd

(
3

10
ue − 1

120
Λ̃

)
≡ P1

(
ue, Λ̃

)
δd (3.8)

δ̃2 = δd

(
37

315
u2
e − 1

945
ueΛ̃− 1

9072
Λ̃2
)

≡ P2
(
ue, Λ̃

)
δd (3.9)

Id = δdH0(∆)

It = δd
(
ueH1(∆)+ Λ̃H2(∆)

)
where∆ denotes the ratioδT /δd and the functionsH0, H1
andH2 are (see Appendix A):

H0 = 3

10
∆

H1 =∆2
(

2

15
− 3

140
∆2 + 1

180
∆3
)

H2 =∆2
(

1

90
− 1

84
∆+ 3

560
∆2 − 1

1080
∆3
)




(3.10)

for ∆� 1 (Pr � 1)

H0 = 1−∆−1 + 1

2
∆−3 − 1

5
∆−4

H1 = 3

10
∆− 3

10
+ 2

15
∆−1 − 3

140
∆−3 + 1

180
∆−4

H2 = 1

120
− 1

180
∆−1 + 1

840
∆−3 − 1

3024
∆−4




(3.11)

for ∆� 1 (Pr � 1)

Finally the wall shear stress and the Nusselt number
expressed as follow:

τw = (2ue + Λ̃/6)

δd
≡ P0(ue, Λ̃)

δd

Nu= 2

δd∆


 (3.12)

We can now transform Eqs. (3.5) and (3.6) by means
relations (3.8)–(3.12) into two coupled evolution equatio
for δ (the square ofδd ) and∆, namely:

P
dδ = S (3.13)

dx
Q
dδ

dx
+R

d∆

dx
=K (3.14)

with:

P = P2 + 2Λ̃
∂P2

∂Λ̃

S = 2

[
P0 − ∂P2

∂Λ̃

df

dx
δ2

− δ

(
RiJxH0 + due

dx

(
P1 + ∂P2

∂ue

))]




(3.15)

Q= ∆

2

(
ueH1 + 3Λ̃H2

)
R =∆δ

(
ue

dH1

d∆
+ Λ̃

dH2

d∆

)

K = 2

Pr
−∆δ

(
H1

due
dx

+ δH2
df

dx

)




(3.16)

4. Cauchy conditions

In order to set up a closed problem, the dynamic s
tem (3.13), (3.14) must be completed by appropriate Cau
conditions. These are obtained by assuming regular be
iours for the fundamental variablesδ and∆. This is possible
only under certain reserves depending on whether the p
lem is symmetric or not.

4.1. Symmetric case

Let us recall that the symmetric problem is characteri
by a vertically oriented free stream. In this configurati
the stagnation point is known in advance and is naturally
forward stagnation point of the potential flow. At this poi
we have of course:

(P,Q,R)= (0,0,0) (4.1)

sinceue(0)= Jx(0)= 0 and thereforẽΛ(0)= 0. Hence, one
may write:

S

ue
(Ri, δ,∆,x = 0)= 0 (4.2)

K(Ri,Pr, δ,∆,x = 0)= 0 (4.3)

These equations are coupled via the termH0(∆). Their
resolution provides the valuesδ0 and ∆0 at x = 0 as
functions ofRi depending on the parameterPr. Moreover,
one may conclude again that(

dδ

dx

)
x=0

=
(

d∆

dx

)
x=0

= 0

since Eqs. (2.1)–(2.4) remain unchanged by the transfo
tion

(x, y,u, v, θ)= (−x, y,−u,v, θ) (4.4)

This invariance comes from the symmetry property ofue(x)

and hence ofJx(x).
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4.2. Asymmetric case

In the asymmetric case, the free stream is not vertic
oriented, so the external velocity field and the tangen
component of the buoyancy force are described by
different functions. As a result, the invariance prope
discussed above is no longer satisfied. Then, neitherx =
0, nor the abscissa of the lowest point of the cylin
does constitute a solution for Eq. (4.1). One can howe
expect that the location of the point where the bound
layer begins to develop is somewhere in the unfavour
mixed convection region, between the stagnation point
free and forced convection. Owing to the parabolic na
of the problem in the symmetric case and because
the reversal direction of the flow in the present case,
procedures which are used to describe the beginning o
boundary layer in each of them are slightly different.
the asymmetric case the Prandtl number which characte
the importance of thermal convection plays the lead
part in the procedure. For convenience, but without los
generality, we consider, as it is mentioned previously, o
the caseα = π/2.

4.2.1. Pr is close to unity
When the Prandtl number is of order unity, the tw

boundary layers are of the same size, so the ratio∆ is
of order unity. Hence, Eq. (3.13) suffices to describe
communal thickness of the two layers. In order thatx →
δ(x) be a smooth function, the existence of a particu
stationx0 whereP(x0) = 0 requires that at this stationS
must also vanish. One can readily find that where the sec
order polynomialP(ue, Λ̃) vanishes, one must have eithe

Λ̃= 12ue (4.5)

or

Λ̃= −17.76ue (4.6)

The first condition is not realistic because it does not allow
recover the results of the limiting case of forced convec
by taking the limitRi→ 0.

The second condition which will be considered lat
yields a realistic description of the boundary layer flo
including particular configurations such as forced, free
symmetric mixed convection. The next step consists
seeking the location of the starting point of the bound
layer. Using the relation (4.6) with the definition (3.4
the conditionS = 0 is transformed into a single variab
equation whose solution gives the starting pointx0. This
value of course depends on the mixed convection param
Ri. The valueδ0 of δ at x = x0 is then deduced from (3.4
with the aid of (4.6).

Because of the vanishing of bothP and S at x = x0,
the derivative( dδ

dx )x0 must be determined to complete t
formulation of the initial value problem. Making use of th
Taylor expansion and keeping only the first order terms,
s

r

following second order algebraic equation is obtained
( dδ

dx )x0

A0

(
dδ

dx

)2

x0

+ 2B0

(
dδ

dx

)
x0

+C0 = 0 (4.7)

The coefficientsA0, B0 andC0 are given in Appendix B.

4.2.2. Pr→ 0
We first note that ifPr is much less then unity, heat

transferred mainly by conduction and thereforeδT becomes
infinitely large, whilstδ remains a well-defined function, s
∆→ ∞ andH0, H1 andH2 take the asymptotic following
forms

H0 ∼= 1, H1 ∼= 3

10
∆, H2 ∼= 1

120
(4.8)

The approximationH0 = 1 yields the decoupling of th
evolutions of the two boundary layers since Eq. (3.13) is
longer dependent on∆. Furthermore, this equation becom
then similar to that corresponding to the casePr = 1 with a
simple modification of the global buoyancy term.

The evolution of∆ which is slaved to that ofδ starts from
the stagnation point of the potential flow(x = 0) becauseR
is here proportional toue(x) and thereforeR(x = 0) = 0.
Accordingly, Eq. (3.14) yields:(
K −Q

dδ

dx

)
x=0

= 0 (4.9)

which can be written in accordance to (3.13)

(PK −QS)x=0 = 0 (4.10)

solving this equation gives an approximate value ofδT at
x = 0 in the form:

δT ≈
(

3

10
Pr

)−1/2

(4.11)

This formula shows that in the limitPr → 0, the thermal
boundary layer thickness at the stagnation point of
potential flow is determined only by the Prandlt number.

4.2.3. Pr→ ∞
In the limit of large Prandtl numbers, we recall that h

is rather convected by the fluid flow except in a very t
thermal boundary layer. Since the thicknessδT and the ratio
∆ become vanishingly small then the functionsH0, H1 and
H2 may be asymptotically approached by:

H0 ∼= 0, H1 ∼= 2

15
∆2, H2 ∼= 1

90
∆2 (4.12)

As in the previous case the thermal boundary layer e
lution follows that of the dynamic boundary layer becau
H0 = 0 and therefore the right-hand side of (3.13) does
either depend on∆. For this reason, Eq. (3.13) appears
a forced convection equation where buoyancy terms are
plicitly taken into account via the mixed convection functi
Λ̃(x). The procedure used in the casePr = 1 is also applied
to seek the station where the dynamic boundary layer be
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to develop. Concerning the evolution of the thermal bou
ary layer, it is advisable to firstly note that, in view of (4.1
the functionR takes the form:

R ≈ 1

45
δ2
T

(
Λ̃+ 12ue

)
(4.13)

It becomes zero at the stationx∗
0 whereΛ̃= −12ue, that

is precisely whereτw = 0. This means that the point of ze
skin friction marks the beginning of the thermal bound
layer. Here, the value∆0 of∆ is found by solving Eq. (4.10
at x∗

0. This equation can again be solved explicitly in vie
of (4.12), one obtains:

∆0 = Pr−1/3
(

120P

(Λ̃+ 4ue)S + δP (8due
dx + 2

3δ
df
dx )

)1/3

x=x∗
0

(4.14)

which gives after some elementary steps:

(δT )x∗
0
= Pr−1/3

(
30δd

d
dx (τwδd)

)1/3

x=x∗
0

(4.15)

This is in agreement with the classical result which te
us that the thermal boundary layer thickness behaves
Pr−1/3 asPr → ∞.

In the present asymptotic case we note that the in
value given by (4.15) depends on the history of the flow fr
the starting point of the dynamic boundary layer. In or
to complete the initial conditions for Eq. (3.14) a Tay
expansion is finally performed to express the value(d∆

dx )x∗
0
.

4.2.4. The general case of finite values of Pr
The main feature of the previous particular cases is

the dynamic boundary layer evolves independently of
thermal one. Its evolution is however influenced by bu
ancy. Once the dynamic boundary layer is determined
all x, the equation governing the evolution of∆ is then
integrated. For an arbitrary value ofPr, the two boundary
layers interact, so the coupled Eqs. (3.13) and (3.14) m
be solved simultaneously. Furthermore, this case is of
ticular relevance because the conditions required to star
integration are no longer available. In order to circumv
this last difficulty, a prediction–correction iterative proc
dure is implemented and the missing conditions are so
by proceeding as follow. We gradually increase or decre
the value ofPr from the limiting valuesPr → 0, Pr → 1
andPr → ∞ for which the solutions are already known. F
a given value ofPr, an estimate of∆, say∆0, is required
to initialize the procedure. To this end, the solution cor
sponding to a previous value ofPr is chosen. Proceeding a
before, the couple(x0, δ0) is then calculated. Performing
first order Taylor expansion of (3.13) nearx0 and making use
of (3.14) to eliminate(d∆

dx )x0, we get an equation similar t
(4.7) which allows to express( dδ

dx )x0.
Subject to these predicted conditions, Eqs. (3.13)

(3.14) can be numerically solved by using a fourth or
Runge–Kutta scheme. In order to the evolutions ofδ and
∆ be realistic, the factorR and the expression(PK −QS)

must cancel at the same station, sayx1. Otherwise, the
predicted value∆0 is corrected and the procedure is repea
until convergence is reached.

5. Some numerical results

Information about the influence of Prandtl number
the variation of the dynamic boundary layer thickness
the stagnation point withRi can be gained from Fig. 2(a
(Pr � 1) and (b)(Pr � 1). First of all, it is not surprising
that the curves all converge to a same point in the for
convection regime. Fig. 2(a) indicates that the bound
layer thickness atx = 0 is a smoothly decreasing functio
with respect toRi for the reference casePr = 1 and for
Pr less than unity. It appears that the rate of decre
is more important for smallPr. We also observe th
breakdown of boundary layer character, in the oppo
mixed convection, beyond some critical value of|Ri|
which decreases by decreasingPr. Qualitatively opposite
observations can be made from Fig. 2(b), concerning
effects of moderate and large values ofPr. Here, the
boundary layer is removed, for assisting external flow, if
Richardson number exceeds some threshold value whi
closed to 0.1 asPr → ∞. The increasing departure with|Ri|
from the base casePr = 1 is an indication of the importanc
of the Prandtl number on the convective properties of
flow.

To illustrate how the buoyancy force and the Pran
number affect the thermal boundary layer, representative
tributions of∆ (rescaled by the factorPr1/3) for Pr � 1 and
of δT for Pr � 1 are shown in Fig. 2(c) and (d), respective
The reference case (Pr = 1, ∆ = 1) is included for com-
parison. Let us notice that the relation (4.15) correspon
to the asymptotic casePr → ∞ becomes in the symmetr
configuration:

Pr1/3(∆)x=0 =
[

2

15
δ0 + 1

180
δ2

0(Ri+4)

]−1/3

(5.1)

Then, the behaviour of the thermal layer thickness
function ofRi for Pr → ∞ follows from that of the dynamic
layer thicknessδd . We observe a monotonic decrease of∆

for all Pr, in accordance with the evolution given by Polid
et al. [6].

For Pr less than unity,δT is preferred to∆ owing to
the fact thatδT Pr1/2 behaves like a constant asPr →
0, in view of (4.11). For this range ofPr, δT is lying
between the extreme limits corresponding toPr = 1 and to
asymptotically smallPr.

In Fig. 2(e) we have displayed the variation of the sepa
tion pointxs with Ri in the symmetric case corresponding
opposite(Ri< 0) and favourable(Ri> 0)mixed convection
After proper implementation of notational changes, res
given by Merkin’s model forPr = 1 are closely recovere
near the forced convection regime. Noticeable divergen
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(a) (b)

(c) (d)

Fig. 2. Symmetric case: (a) Initial value ofδd as function ofRi for Pr � 1.
(b) Initial value ofδd as function ofRi for Pr � 1. (c) Initial value of∆ as
function ofRi for Pr � 1. (d) Initial value ofδT as function ofRi for Pr � 1.
(e) Variation of the separation pointxs with Ri.

(e)
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(a)

(b)

Fig. 3. Location of the stagnation point versusRi. (a) ForPr � 1. (b) For
Pr � 1.

appear as|Ri| is increased, especially for positive value
Ri. The critical value ofRi which first gives no separation
difficult to determine as it is noted by Merkin [1]. We do n
know how to explain the discrepancies for the computatio
approaches are very different.

Concerning the asymmetric configuration, only posit
values ofRi are considered owing to the symmetry prop
ties of the problem whenα = π/2. Plots of the starting poin
x0 of the dynamic boundary layer with respect to Richa
son number for the same representative values ofPr are
given in Fig. 3(a) and (b). It is to be noted that heating
cylinder brings the pointx0 nearer to the lower point. In
creasingPr makes this tendency less noticeable and forPr
greater than some limit which is of order unity, the shift
(a)

(b)

Fig. 4. Variation of the initial value ofδd with respect toRi (asymmetric
case): (a) ForPr � 1. (b) ForPr � 1.

the starting point from its positions in forced convection
a nearly linear function ofRi. In the limit Pr → 0, x0 as-
ymptotes the lower point whenRi is large enough. Thes
results are in accordance with the Prandtl number effect
the range of Prandtl numbers less than unity, this shift
hibits a change in incline for smallPr and at aboutRi = 4.
Beyond this value ofRi and asPr → 0, the starting poin
of the boundary layer approaches closely the lower po
In this situation, the boundary layer flow globally resemb
to that of free convection. Fig. 4(a) is a plot ofδd versus
Ri for moderate and large values ofPr. It is seen that, for
a fixedRi, δd is a decreasing function ofPr; it grows with
Ri especially whenPr is closed to unity. Fig. 4(b) presen
a particular interest owing to the seemingly strange beh
iour of δd with Ri for asymptotically smallPr. We observe
indeed a change in incline at certain value ofRi (Ri = 4
for Pr → 0). For Ri less than this limit,δd grows with Ri
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and decreases beyond this limit. The reason for this foll
from Fig. 3(b) because whenRi is greater than the prev
ous limit, the starting point of the boundary layer approac
closely the lower point whereδd decreases withRi according
to Fig. 2(b).

6. Concluding remarks

The nonexistence of trivial Cauchy conditions for
asymmetric mixed convection problem is the result of
interaction between ascending buoyancy driven flow n
the wall and descending flow far away from the wall. T
confers to the boundary layer flow an elliptic charac
The use of the integral method of Karman–Pohlhausen
allows to characterize the beginning of the boundary la
and therefore to recover the parabolic nature of the flow
the global sense. It is shown that the two boundary lay
do not start from the same point except forPr = 1. For
this particular value ofPr, the starting point is found a
root of an algebraic equation, depending on the Richard
number. A similar equation is solved in order to found
location of the starting point and initial conditions for t
dynamic boundary layer in the limiting cases of small a
largePr. In the former one the thermal boundary begins
develop from the stagnation point of the potential flow
begins to develop from the point of vanishing skin fricti
in the second one. For an arbitrary value ofPr, a prediction
correction procedure is required for solving the problem.
worth noting that the starting point of the thermal bound
layer is either at the left or at the right of dynamic bound
layer one’s, depending on whetherPr is smaller than unity
or not.
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Appendix A

Id =
δd∫

0

θ(x, y)dy

=




δd∆

1∫
0

F(η)dη for δT < δd

δd∆

1/∆∫
0

F(η)dη for δT > δd

In view of (3.3),Id becomes:
Id = δdH0(∆)

IT =




δT

1∫
0

u(ζ )θ(η)dζ for δT < δd

δd∫
0

uθ dy +
δT∫
δd

ueθ dy for δT > δd

By using (3.1) and (3.2)IT can be written:

IT = δT

{
ue

1∫
0

[
1− F(ζ )

]
F(η)dη

+ Λ̃(x)

1∫
0

G(ζ )F (η)dη

}
for ∆< 1

and for∆> 1, we have:

IT = δT

{
ue

1/∆∫
0

(
1− F(ζ )

)
F(η)dη

+ Λ̃(x)

1/∆∫
0

G(ζ )F (η)dη+ ue

∆∫
1/∆

F(η)dη

}

which can be written as:

IT = δT

{
ue

( 1∫
0

F(η)dη−
1/∆∫
0

F(ζ )F (η)dη

)

+ Λ̃(x)

1/∆∫
0

G(ζ )F (η)dη

}
for ∆> 1

The formulas (3.16) follow by putting:

H1(∆)=




1∫
0

(
1− F(ς)

)
F(η)dη for ∆< 1

1∫
0

F(η)dη−
1/∆∫
0

F(ς)F (η)dη for ∆> 1

H2(∆)=




1∫
0

G(ς)F (η)dη for ∆< 1

1/∆∫
0

G(ς)F (η)dη for ∆> 1

Appendix B

A0 = f
∂P3
∂Λ̃
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r,

ction
Heat

xact
991)

i-
ion,

r a

ie de
imite
B0 = due
dx

[
∂P3

∂ue
+ P5 + Λ̃

∂P5

∂Λ̃

]

+ δ
df

dx

[
∂P3

∂Λ̃
+ 2P4 + Λ̃

∂P4

∂Λ̃

]

+ 3

5
RiJx−2f

∂P0

∂Λ̃

C0 = δ3∂P4

∂Λ̃

(
df

dx

)2

+ δ2
[
P4

d2f

dx2
+ due

dx

df

dx

(
∂P5

∂Λ̃
+ ∂P4

∂ue

)]

+ δ

[(
due
dx

)2
∂P5

∂ue
− 2

df

dx

∂P0

∂Λ̃
+ P5

d2ue

dx2

+ 3

5
Ri

dJx

dx

]
− 2

∂P0

∂ue

due
dx

with:

P3 = P2 + 2
∂P2

∂Λ̃
, P4 = 2

∂P2

∂Λ̃
P5 = 2

(
P1 + ∂P2

∂ue

)
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